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ABSTRACT

A method is presented for calculating the pressure and composition
of the vapor phase in the carbon-silicon binary system. The following
quantities are necessary: partition functions of the various molecular
species present in the vapor, vapor pressures of graphite and liquid

silicon, and the standard free-energy increment for the change
C(graphite) + Si(liquid) = SiC(solid) .

A study is made of the equilibrium: vapor and solution of carbon in

liquid silicon.
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THE GASEOUS EQUILIBRIA IN THE CARBON-SILICON BINARY SYSTEM

1. INTRODUCTION

This report is prepared with a primary purpose: To arouse the interest
of colleagues working in molecular and mass spectroscopy, thermochemistry,
and general physical chemistry in the carbon-silicon binary system. With the
new semiconductor silicon carbide rapidly emerging, the practical importance
of the carbon-silicon system has greatly increased. In order to perform nu-
merical calculations, we still need unquestionable values for .the vapor pres-
sure of liquid silicon and the heat of formation of silicon carbide,; together
with, possibly, a large set of molecular constants for the species present in
the binary vapor phase. It is hoped that with more workers interested in the

problem, these data will gradually become available.

Since the calculations involve sums of terms with two running indiCés,
some of the derivations (especially towards the end of the work) contain
large, though not complicated, equations. With one exception, nevertheless, the
final results are brief forms. It may appear that some elementary steps and
repetitions in the derivations could have been omitted. However, in view of
the preliminary nature of the report, one should not be too concerned about
this, inasmuch as it is our purpose to familiarize the reader with the mathe-

matical device used.

2. TENTATIVE SKETCH OF THE PHASE DIAGRAM

At the outset it is clear that pressure must be considered along with
composition and temperature. Thus the complete phase diagram should be visu-
alized as a prismatic body with composition, temperature, and pressure co-
ordinate axes as its edges. We have studied an isothermal composition-pressure

section of this body. Figure 1 shows the initial sketch of such a section, sup-

posedly as projected. The sketch is based on the following considerations:
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(1) The positions of points a and h are given by the vapor pressures
of pure carbon and silicon, respectively. '

(2) At very low pressure, i.e., corresponding to the top region of
Fig. 1, there will be only binary vapor phase.

(3) As the pressure is increased, the first condensed phase which ap-
pears is graphite. Then the other two condensed phases, silicon carbide and
liquid silicon appear.

(4) According to the studies of Ruff and Konschak,lthere exist no other
silicon carbides than SiC.

(5) It is assumed that silicon does not substitute for carbon in graphite.
Silicon carbide is considered to be: stoichiometric only.2 At temperatures around
the melting point of silicon, the solubility of carbon in liquid silicon is negli-
gible. Thus we can draw three vertical lines: ab and extension; ce and ex-
tension; also hg and extension for the three condensed phases: graphitg; silicon
carbide, and liquid silicon. At higher temperatures, the solubility of carbon
in liquid silicon becomes appreciable. The extension of the problem is treated
in the final part of this work. _

(6) 1In application for present purposes, Gibbs' phase rule is formulated
¥ as follows: the maximal number of coexistent phases equals the numbér of com=

ponents plus two. There are two components: silicon and carbon. Hence the
maximal number of phases is four. This corresponds to a gquadruple point - a
singular pair of temperature and pressure. On the line bcd, three coexistent
phases have been indicated: graphite b, silicon carbide c, and vapor d. This
combination of phases being short of the maximal number of phases by one phase,
therefore, has one degree of freedom. Analytically, pressure at the bcd level

is a function of temperature. Above the line bed, we have a combination of on-

ly two phases: graphite ab and vapor ad. Here there are two degrees of freedom._z
Analytically, at a given temperature this combination of phases can exist at a -

range of pressures from a to b. Analogously, the line efg has been established.

1. O. Ruff and M. Konschak, Z. Elektrochem. 32, 515 (1926).
2. J. A. Lely, Ber. deut. keram. Ges., 32, 229 (1955).
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An extensive use of the thermodynamical concept of van't Hoff's equi-

3,4

librium box has been made here (Fig. 2). It is an ideal vessel supplied

with a set of hypothetical membranes, each of which is permeable to only one
of the molecular species present in the binary vapor in the box. PC s PSi’

PSi , ... are the partial pressures of the respective molecular species, and
2
Peq box

pistons, certain species can be withdrawn or introduced into the box. From

is the total pressure of the mixture. By reversible operation of the

these mental experiments, the free-energy increments for changes involving mo-

lecular species within the box can be calculated.

In Fig. 1, the areas I, III, and V, and the lines II and IV can be thought
to correspond to van't Hoff's equilibrium boxes. As already mentioned, pres-
sure of the boxes I, III, and V is variable within a certain range. In the
boxes II and IV, it is constant. After some preliminary arrangements that will
be made in the next chapter, we will again return to the equilibrium boxes, de-

riving from them information regarding curves ad, df, and fh.

3. PRELIMINARIES

Let us denote a general molecule present in the binary vapor phase by

3

ciSij' Further, consider a volume V cm” of vapor phase, and let the number
of CiSij molecules present in this volume be Nij' At this point it should

be mentioned that the quantity V will cancel out in the derivation, and there-
fore we do not have to be concerned about its magnitude. Our treatment is
confined only to the low-density vapor cases when the forces of cohesion be-

tween the molecules can be neglected. Then, according to statistical

3. J. H. van't Hoff, Z. physik. Chem., 1, 481 (1887).
4, 8. Glasstone, Textbook of Physical Chemistry (New York: D. Van Nostrand

Co., 1948), cf. p. 818.




mechanics,s’é’7
W, .
1J
N, . Q. . e £T
1d 1d
3 3 = T 3 3 + (1)
Mo Yo,1 9.0 %,1
where

iti i C. 53 £ Ak
Qij’ Ql,O’ and QO,l are the partition functions of the iS 3 molecule,

monatomic carbon, and monatomic silicon, respectively;

wij is the work of formation, in ergs, of the molecule CiSij'

It is the work which the world's work bank gains when i atoms of carbon, sepa-
rated at infinitely large distances, at rest and at ground state of éxcitation,
come together with j atoms of silicon, initially at the same conditions, and

form a CiSij molecule, also at rest and at ground state. This work is usually

called the dissociation energy D O.j, and is given in electron volts. The re-

O i
lationship between w.., and D O.. SR
1 0 1ij
w,. = 1.60186°10712p 0. |
ij 0 1]
' -16
£ = Boltzmann's constant = 1.38026-10 ¥
T = temperature in OK».

5. G. S. Rushbrooke, Introduction to Statistical Mechanics (Oxford: Clarendon
Press, 1949), cf. p. 182, Eq. (37').

6. R. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge: Uni-
versity Press, 1949), cf. p. 165, Egs. (506,7), (507,1).-

7. R. H. Fowler, Statistical Mechanics (Cambridge: University Press, 1955)

2

cf. p. 164, Eq. (479).




Equation (1) can be rewritten:
W, .

. . aigs]
Nl,z>l <\IO!lJ M (2)
1]
Y,/ N,

N,. =
1d

We shall denote

RE =Q (3)
9 0
and
N _ v
BLETE SR (%)

Then (2) becomes

(5)

Also, either from the definitive equations (3) and (4), or from (5),

considering that both w and w are zero, we obtain:
150 0,1
Nl,o = Q’l,O 2 (6)
and
N 105 Q’O,l x (7)

The partition function Qij can be rigorously decomposed into two factors:
the translational partition function Qt .. and the internal partition
rans 1ij

function Qint 5

Q.

Qij I Qtrans 1] int -1y




The translational partition function is

b M, RT\ 2
iJj 2
Qrons 11 = |—5—] 2+ v, (9)
rens ij 2
h™ N
Av
where
Mij 2 the molecular weight of the CiSij s
h = Planck's constant = 6.6238:10"27 ,
- 23
N,, = Avogadro's number = 6.0254.10
|
The internal partition function Q. has to be calculated from the 1

int 4
energy levels of the CiSij molecule, due to internuclear vibration, rotation,

and electronic excitation of the molecule.

When Q. 13 10 (8) is replaced by the right-hand side of (9), and the

new expression for Qij thusiobtained is substituted into (5), we get .
wj,.‘j
. 3 i3 3 X
N (- S 2V oA M2 q . .. eNT . (10) .
i) 2 a0y int ij
h NAV

The product of the last three factors on the right-hand side of (10) is

a characteristic of the CiSi. molecule alone. Let us denote it by ki.:

Wi .
1J
ki, = M2 kT

ij 135 Sint ij ©

nolw

. (11)

Then, upon calculating the numerical value of the aggregate of universal con-

stants, (10) becomes

3 g g

o 20 = 1 .J

oy = o K
N1J 1.8789,10 e ¥ o kij

5 (12)




Each CiSij molecule’ contains i atoms of carbon. Therefore, the total

number of carbon atoms, free and combined, in the volume V, is
2=y 1
and the total number of siliébn atoms is
Y dN.. .
% ij (14)
The ratio of carbon to silicon atoms in the vapor then is
2y 2 1o Mk

e Al ig . _Ad Ry (15)

: Y. J
f % eV

J

To indicate composition in Fig 1, we used the atomic fraction of carbon X,
which is the conventional usagé. However, for ouf présent purposes, x as de-
fined by (lS),and which also corresponds to x in SiCx,will be a more convenient
variable. For pure carbon, x =2 , and the line ab in Fig. 1 is removed to
infinity. However, it will be shown that the curve ad when plotted as
loglO % versus X reaches infinity at zero slope{ which is a simplifying feature.

Also, the new variable x is convenient in the treatment of the solution of carbon

in liquid silicon.
The total number of all kinds .of particles in the volume V is
Y N, = 1.8789 1020T%v2ai>cjk (16)
iy id 1J 1)

At any instant, the pressure, volume, and temperature of the vapor will
be connected by the gas law:
£ Ni‘
PV = —szd.R7, (17)

NAV
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where R = 82.079, when P is measured in atmospheres.

In (17), when g% Nij is substituted by the right-hand side of (16), V on
both sides of the equation cancels out, and upon multiplying and dividing of

the constants, we get

P

) 2 ;
42 i o IO ;
2.5595.10"° T 2 lzJ a A kij : (18)

o hn

The product 2.5595.10'2 T
shall denote by a.

, which is a temperature-dependent constant, we

Then

L 13
P =a g% o X kij 5 (19)

and the partial pressure of the species CiSij is

P, =aa Mk, . (20)
iJj ij
_ e
In tHe case of pure carbon vapor (1¢) becomes
Y o
Pcarbon il L kiOa 2 (21)

the subscript Yo" indicating absence of silicon; and for pure silicon vapor

= .8 2: xj k

Psilicon 3 o oJ’ (22)

n_n

the subscript "o" indicating absence of carbon.

The quantities 06 and Ko formally are temperature-dependent constants;
we shall need them later. They can be calculated from the experimentally
measured vapor pressures of carbon and silicon by means of (21) and (22), re-

spectively, provided that a sufficient number of kio and kOj values is availa-
ble.
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L. THE CONDITIONS DERIVED FROM THE FIVE EQUILIBRIUM BOXES

The First Equilibrium Box. Curve ad. - In the first equilibrium box, the

condensed phase is graphite, and the pressure of this box can be any fixed value
in the range ab. By means of this box, we can find the Gibbs' free-energy incre-

ment ZﬁGie'for the change

C(graphite, 1 atm,T) + Si(monatomic gas, 1 atm,T) +-[XGie'= SiC(gas consisting
of SiC molecules only, 1 atm,T) (23)

as
- 921 aq B.T
AG, =R 1n A td Casy (2k)
Pl,l eq b. I

In order to calculate [XGie in calories, R = 1.98773 must be used.

=
I
which has been chosen in the range ab, of the box. Therefore, if in (24)

According to thermodynamics, the value A\G_ " is independent of the pressure,

PO,l b b T and Pl,l aa bt are substituted by akeq'b T ko,l and aaéq b I°
keq b I kl,l’ respectively, wixggg
r 1%
k
Oriill RT
ML
b R % ) (25)
1l

which is a constant for given temperature. The condition (25) subsists along
the whole extent of the curve ad; consequently, also at the terminal point a.
Therefore

aeq b I = comst =a , (26)
which expresses in our way the fact that the pressure of carbon vapor in this

box, on account of graphite being present as a condensed phase, is constant.

By means of (26), (19), and (15), the curve ad can be calculated. We need
only find the A value for the terminal point d; this will be possible from the

second equilibrium box.




I

Before leaving. the first equilibrium box, we shall furnish thie proof
that

s 1

d log, . =— d, log. : =

14m 1OIP i 10=P = 0; (27)
X—> 00 dx dx o (07
Qg o

A

I
)

i.e., that the curve ad, when the abscissa is x, instead of X, reaches the

point a (now at infinity) at zero slope.

We shall proceed as follows:

1
d loglo P
d log = da
et o8 e S . (28)
dx a:ao -dﬁ a:ao
dn
d log
10 P 1 EraP
= ~ 0.43h3 5-i=s (29)
an Q= O Q= N
(@) (@]
From (19)
gp i S A o
Tl e ey oliniEy . (30)

At A = 0 in (30), all terms which contain A vanish, and we get




Then (29) becomes

13

il
d log, . =
GRS =-0.b343 8 (K, , +a k ) %
an OL:O!O 2 2 carbon
A=0
From (15)
Zijaix‘j'lk Z,jocixjk Zjeaixj_lk' Ziaix‘jk
a = (Z i j 2 J
Q=q o S St )
(o} i3 o 1J
which at A = O becomes
¥ i
dx (ko 1 O, K 1) 0= (k) +a k ) § 1d k, |
. ===
0]
a=C
A=0

Theyxefore from (28), (29), (31), and (34), indeed,

il
d loglO B
dx =0
o
A=0

We can arrive at the same result by a simpler method:

O

As \—> 0 in the P and x

funetions, all terms which contain A with exponents > 1 vanish as small of higher

order. Thus (19) becomes

(34)

(35)




1L

& i X 6
P a‘% @ (ko + Mgy ) (36)
and (15) by a still more drastic simplification becomes
o
%: i kiO
X = 1 b (37)
N) o o
i

which at & = ab gives

il . 8
57y _aZiaokil .(3)
=0
o
and 1
E: * ao kiO
dx . i s
o (e = T = . (39)
Qe e, R
i
O=CL
Therefore,
a(y o kll)2
dP g 2
a = = ;i }\. 2 ()-"O)

=
(®]

which at A = O becomes zero. This result when substituted in (29), in which

N previously has been formally replaced by x, gives (35).

The Second Equilibrium Box. Point d. - The condensed phases in this box

are graphite and silicon carbide. The pressure is a single value, P By means

q
of this box, we can find the free-energy increment ZSGIie—for the change
C(graphite) + Si(monatomic gas) + ZSGI£6-= sic(solid). (k1)

We have omitted the "1 atm, T" in the parentheses at the chemical symbols,
since it is understood that in the future the superscript - at the free-energy
increment (the standard free-energy increment) will be a sufficient indication

of this.
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It can be shown that

-e_ .
AGr;  =RPF1n Po’l eq b II ° (4e)
On the other hand, ZSGIie-can also be found from the two changes:
first,
C(graphite) + Si(liquid) + zxaliei = 8iC(solid) ; (43)
and second, A
S8i(liquid) + ZXGlieé = Si(monatomic gas). (4k)
AXGliei is the standard free-energy increment for a change with all phases

in condensed state. This increment can be calculated by conventional methods
from the heat of formation of silicon carbide, the heat of fusion of silicon,
and the heat capacities of graphite, silicon (solid and liquid), and silicon
carbide. Since this quantity is important throughout the whole work, we shall

change the notation

RS 3 2
AGII i Sl AGc:ond 3 (45)
- The standard free-energy increment for the second change (44), can be
shown as
e
Slgpim B & R LR s s1itcon (46)
where P is the partial pressure of monatomic silicon above

O3l Lig silicon
pure liquid silicon at the temperature under consideration.

Eq. (44) can be transposed to

$i(liguid) = Si(monatomic gas) - zselieé : (47)

When (L47) is substituted for Si(liquid) in (43), we shall get (41), and
consequently AGH'e must be

& - ©
AGII =BG g T AGII < (48)
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When in (48), [&Gile.is substituted by (L42) and.ﬁxGIieé by (L6), we get
RT 1n P =AGS +RIInP (49)
Qulrgeqgoi LT cond 0,1 idgisildcon
or, o)
AG
P cond
O,l eqb IT 3 & RT , (50)
PO,l liq silicon
or, W
AGcond
A P G RT > (51)

eq b 1k o

Therefore, the coordinates of the point d are

-
AC;ona
"RT ‘ .
Ng = M 3 (52)
and
ad - aO T e A (53)
The Third Equilibrium Box. Curve df. - By analogous reasoning, we can
find that the equation of the curve df is
ae™
cond
RT
N = a N e ’ (54)

The Fourth Equilibrium Box. Point f. - Here

e
AGcond
RT ‘
Qo = ao e (55)
and L
A = N, (56)

7 o

the product a. A, satisfying the condition (54).
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The Fifth Equilibrium Box. Curve fh. - The equation for the curve fh is

SR 11 TS (57)
Let us calculate
1
leglo'l; :
dx N=n (58)
a =0

i.e., the slope of curve fh at point h. Again, for the sake of exercise, we

shall use both the general and the simplified methods.

The general method: As in (28) and (29) ,

|

i 1. dP
d. log: ~is= - 0.4343c = —
AlgE Y P Ldd kN2l Ao
1 S - = ® (59)
dx N o= dx
do )\.=Ko
. From (19)
ap g Zi i(f*lxjk.. (60)
ac | A= Ao % 8. 1]
and
ap r i
@ fiaede = & 3 e T (6L
@ =80
From (15)
¥ 2l 3 o AT SR Yool
(04 L, Jo 2 =\ %= cJ\E o
dx _( 13 - kokij) (13 J kOli) (13 1Jo Koli)(IJ e koklg)‘ (62)
do -
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and
3 7o) 3 e
k. . : K Y- k, .)-0
s SR (4 Nk (haadig).
do A = ko - ;‘
y 2
a =0 i — ] Jk.
( I NG oa)
2ad k.
- —dJ o 1Jj | (63)
s 1
79 M
Then, from (59)
1 ) s
i - 0.4343 = a & A k..
dloé’;lo§! 4 v io Fyg silgeon . 4 O 1
Hx P Ko ' Z;kg kl'
Xl T,
R
- K .
79 ™ %03
g
a E:J A .
T e B
B 7 R
lig-silicon
JIPR.
3Nk,
= - 0.4343 JZ 2 0J (6k)
3
- ko
5™ o3

which is a negative quantity and, in general, <:- 0.4343 .




19

The simplified method; As & —»0 in the P and x functions, all terms which
contain & with exponents >1 vanish as small of higher order. Thus (19) be-

comes

P=a %: xg (kOl + O klj) ; (65)

and (15), by a still more drastic approximation becomes

a L ad k.
T e iy (66)
o
Dk
T 9% Ty
Therefore,
ap _ap . >
da'x=>\o'doz >\=>\0_aj>"ok13’ (67)
& J a=o
and
R
— AN k.
dx - & - J 0 1J (68)
do do
(5 ko o Ao Z: J N
Q=0 J 0 o
Then
daP 3 . xd :
TR TR Ui Z: ik B 5 (69)
o J
=0

When the right-hand side of (69) is substituted for dP/dx in (29),
in which previously A has been formally replaced by x, O = ao replaced by

@ =0, and 1/P by 1/P , we again obtain (64).

lig silicon

What relationships can be extracted from the present mathematical device

when the solubility of carbon in liquid silicon cannot be neglected?




Let us consider the change in which x is a positive fractional number,

eLg L 02

(1-x) C(monatomic gas) + SiCX(liquid) +»[§Gvei = 8iC(gas consisting of
SiC molecules only) (70)

Again, the superscript - at the Gibbs' free-energy increment stands for
a change when all reactants and products are at 1 atm and at the same tempera-
ture T3 we therefore, as previously agreed, do not indicate these conditions
in the parentheses at the symbol of the substance concerned.  The formula
SiCX is used only as a shorthand symbol to denote a solution of carbon in sili-
con, in which on every atom of silicon there are x (a fraction) atoms of carbon.

It implies no structural notions.

It can be shown that

P 1-x
AT PR An et iR (71)
Vi1 P
il
where Pl 0 and Pl 1 are the partial pressures of the species C and SiC above
) 2
the solution SiCX.
Let us consider another change:
x C(monatomic gas) + Si(liquid) + [&Gveé = SiCX(liquid). (72)
It can be shown that
= a X
o e TS f In Pj odx . (73)
0]
By adding (70) and (72), we find that the standard free-energy increment
for the change
C(monatomic gas) + Si(liquid) + AGV“;‘3 = 8iC(gas consistihg of SiC mole-
cules only) . (74)

must be

AT =S YR (75)
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Upon substituting in (75) for AGVe-l the right-hand side of (71), and

for AGV'G'E the right-hand side of (73), we obtain
e Pl Ol-X i
NG = RT ln —2—— + RT ln P dx . (76)
V3 Pl 1 0 1,0
2

Now, as can be seen from (T4), the AGV'Q'3 is independent of x. When

Pl,O is replaced by ax kl,O and Pl,l by ax A kl,l’ (76) can be simplified:

x AGV€’3 gt
x 1o & - lnadx. + la A = ln —2= . (77)
0 RT kl 0
J
The limit for (77) as x — O is:
AGV9-3 kl 1
lim (x lnca) + ln A = ln —2= - (78)
o) RT k
x>0 11840,
Therefore (77) can be rewritten as
X
dn o = flnczdx, +1ln A = lim(xlna)+ln>\o (79)
0 x—>0
or,
x
xlna-lim(xlna)-flna’d_x ==In A + 1n A (80)
x>0 0
or,

X X
fxdlnd:-fdlnk. (81)
0 0
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When the integral signs of (81) are dropped, we obtain

d 1n A
(5 i s (6

= - X s | (82)

soln

which can be recognized as the Gibbs-Duhem equation.8 We have attached the sub-
script "soln" at x in order to emphasize that x is the atomic ratio of carbon
to silicon in the solution, whereas & and A are thé effective concentrations

of monatomic carbon and silicon in the gas phase equilibrating with the so-

lution.

We shall rewrite (82) as

A
dax

(83)

By means of (83), we can approach the problem of the slope d loglo(l/P)/dx.

=--éx -
Q soln

By differentiation,

il

dx

1 @ ' (84)

--o0.3i3z &

As the case is general, all we can write for dP/dx is

2P) , (2B) 4
» 20/\ 2\ /)0 dO : (85)

ap
dx X X dn
<%Eax i Ggi<i?ii
P Y- j
(g@>K . . Rkt 89

2P 4 gal

From (19)

I
o
}—l
R.

]
'—l
7
.
-

and

8. G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical
Substances (New York: McGraw-Hill Book Co., 1923), cf. pp. 207-210.
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When d\/dx in the numerator of (85) is substituted by the right-hand side
of (83), we obtain

Qlw

e TR
<Z ia A kij'xsoln 123 Ay kij> ; (88)

1J

When in (88) we carry z; ja ad kij before the parentheses, we get
1d

Bl ) R s g (89)
B -

X
vap soln ij 5]
For the first term in the denominator of (85), we get from (15)
. . =, (90)

. . 2
.Z-.jalx‘]k..
ij ij

which 6 when divided in the numerator and denominator by }; J o XJ ki

( ) ( 1% I k, > Lad\ ik, - (X vi o ode ) 2 id Wk,
DX il 3y R T ij 13 iy Tl

?Oz)\

A

1] J
simplifies to
, Y 126t I g gl ). 1ot Ik,
<§5 13 ey vap 1iJ i (91)
o . .
. Y st Al k.,
ij 1d

For the ()x/bx)a in the second term of the denominator of (85), we get

7 . O -
(Z jo Ad kij)

i

) L 5ok, - ( iF ol he ) 2 1ok
1) L Ld i1

(Z 13 o ad 3 i

i 1]




2k

which when divided in the numerator and denominator by }:

ij
gives
2 Sdgat xdthae il v Z 32 gt lal
(}§)x _ 21 ij vap 1ij i3
s .ZjOtl)\.Jk..
1J 1J

g a Ak, .
i

When in the denominator of (85) the factor d)/de®is substituted by the

right-hand side of (83), we get

1 X . X !
o [O‘ (m_a)x (:x)a)‘ Xsoln]

From (91),
Y 48 gl i Y i3t ad k.
(bx) e ij vap 1]j iJ
al==] = >
iy L o5atad
5 1
and from (93)
2 1gia” a ik e L 2otk
K(EE) L Ly a0 vap 1j 1
A /oy . ¥
.Zjozlx‘]k..
1J 1J
Then (94) becomes
SRR LRI S e i (N PR X 2t
LA ] 2] vap 1j ij soln 1ij 1 soln vap 1iJ 17
(07 Z: i 5 i
£ 3 e Rk,
1J 1J

The numerator of (97) can be factored to

D of
ij

)

ij(l_J Xvap)(l"J *soln

(9%)

(96)

(97)

(98)
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Thus we finally obtain for (9k4)

¥ o AY k.. (i-5 x_ )(i-j x

)

iy Ly vap soln (99)
M=
a) Joa k, |
1J
From (89) and (99) we get
B (x -x ) Z ja Ak, ,
dP o vap soln 1.3 ij
L ds 0 ’ - (100)
g PESE i Sl W €05 Bnat € 7 i T
i3 iJ vap soln
o 2 3otk
ij +d
which simplifies to
ap (L 1Mk )°
e .| 24 - 101
dx = (Xvap Xsoln) ( )

i J e Pag b

L Gk ki‘j(1~J xvap)(l_‘] “soln

2
When in (84) the factor dP/dx is substituted by the right-hand side of

(101), and P is substituted by the right-hand side of (19), we finally obtain:

1 M 2
d loglo = (1ZJ o kij)
= - 0.4343 (x. =~ x ) :
ax Vap . soln’ o Salr 3y - Pty
Q o[l)\,,kid [Z_ A kij(l_J xvap) (1-J'éoln)]

iJ ig
(102)
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When x = X the slope becomes zero, in agreement with the Gibbs-
vap soln

Konovalov theorem.9

It remains only to be proved that at x =0 and @ = 0, (102) becomes

soln
(64).

The proof follows: In (102) we remove x

right-hand side of (15). Accordingly,

h
Sei and replace Xvap by the

5 1 Y jo Ak, . Y gt
log. . = £ 1 5 21|
10 P 3 , (
L B Ry 0.4343 i 3 BShi 2. hof MO
L T T & Rl ZlJOﬂ %,
e 1) s 1J Vap ij
g ij iJ
At @ = O the first fractional factor in (103) becomes
E: J xo 0J
s (10k4)
Z: xo 0J

and the second fractional factor becomes an indeterminate form. Let us re-
solve it. By differentiating both the numerator and the denominator with

respect to & , we get

TR ey
= ij
_ —d . (105)
I e ey bamp 1A%} i-1.J
2 = Ly =i o SN . . i
]'_Zj 1FmE) )\.hij (boz )\i%l‘]a)\.kij Xv ZJlJO! }‘.kJ

9. I. Prigogine and R. Defay, Chemical Thermodynamics (New York: Longmans,
Green and Co., 1954), cf. p. 282.
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When @ = O, the numerator and the first term in the denominator of (105)

become z: xg klj . The second term in the denominator becomes zero because,
J

from (91), the first factor in this term is ( Z:xg klj)/( ij x ko.),and the
: ; o 0
J J

second factor is zero. The third term in the denominator is also zero because

the first factor in this term is zero,and the second factor is ;-j Ad K

D i
Therefore, since (105) is unity, (103) reduces to (6U4). J




APPENDIX 1

THE PRESENT STATUS OF THE VAPOR PRESSURE OF LIQUID SILICON

In Fig. 3, data are assembled on the vapor pressure of liquid silicon as
given by Ruff and Konschak,l Baur and Brunner,lO Grieger,ll and Honig. = In
their experiments, Ruff and Konschak, and also Grieger, used a silicon carbide
crucible as a container for the liquid silicon. Therefore, their measurements
actually represent the pressure for the level efg in Fig.l. Calculating the
separation hg for l7OOOK, the temperature at which it is safe to assume no solu-
bility of carbon in liquid silicon, one finds a very small value. This is due
to the vapor pressure of graphite being much lower than the vapor pressure of
liquid silicon. Hence the silicon carbide container is permissible. At tempera-
tures above l7OOOK, this discrepancy may increase considerably. Baur and Brunner

have used an aluminum oxide crucible, which may have distorted their results.

Honig developed his function from mass spectroscopic measurements and from
comparison with germanium. In the range of low 10 /T, we have extrapolated some-
what beyond Honig's original limit (th/T = 3.6). Since his function is lightly
curved, this may have affected the slope of our plot. It is believed that the

error thus introduced is small.

10. E. Baur and R. Brunner, Helv. Chim. Acta 17, 958 (1934).
11. O. Ruff, Trans. Electrochem. Soc. 68, 87 (1935), cf. curve 3 in Fig. 6.
12. R. E. Honig, R C A Rev. 18, 195 (1957).
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APPENDIX 2

Equation (107) has been calculated by Humphrey and his co-workers. It
represents the average function for both the hexagonal and cubic modifications,

their difference being small. Equation (108) has been calculated in this work.

The numerical values of thermochemical data used are given in Table 1.
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APPENDIX 2

Equation (107) has been ¢alculated by Humphrey and his co-workers. It
represents the average function for both the hexagonal and cubic modifications,
their difference being small. Equation (108) has been calculated in this work.

The numerical values of thermochemical data used are given in Table 1.
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SUPPLEMENT
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THE GASEOUS EQUILIBRIA IN THE CARBON-SILICCN BINARY SYSTEM
By
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APPENDIX 2

Let us denote by primes all quantities measured at the level bed
(Fig. 1) and by double primes those measured at efg:

CASE
J cond
o1 e s R RT 5
Pij ax'”™ A kij acr_ Ao e kij . (s1)
and, at temperatures somewhat above the melting point of silicon,
1 AT
cond
i J i RT J
3 At £y ¥t ] ’
Pij ac A kij acl_ e 54 kij (s2)
On dividing (S1) by (82), we obtain:
SN <
pr (J_l)szcond
j RT
.. : (83)
i3

Thug the Z&di;n can also be determined from the pressure ratios.
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